

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 5, May 2015)

28

Majority Logic Fault Detection with Difference Set
Cyclic Code and LDPC Codes for Memory

Applications
 KUBRA BEGUM1 MAHESH R.K2

M.Tech student, VLSI Design & Embedded Systems Assistant Professor, Dept. of E&CE, VLSI Design &
 APPA Institute of Engineering & Technology Embedded System APPA Institute of Engineering &

 Gulbarga, Karnataka, India. Technology Gulbarga, Karnataka, India.
 kubrafshaik@gmail.com rkmahesh10@gmail.com

ABSTRACT- Due to higher integration densities,

parameter variations and technology scaling the failures to
performance may occur for every practical applications.
this must be protected with effective error correction
codes. An advanced error correction codes are used when
an additional protection is needed. The project work deals
with the idea of majority logic fault detection and
correction technique using DS-LDPC codes with the
application focused on memories. the majority logic
decoder/detector codes is used because of their capability
to correct large number of soft errors. Even though MLD
consumes large time, this can be overcome by the proposed
method which detects the errors in less cycle time. The
proposed technique significantly reduces memory access
time and also it takes three iterations instead of N
iterations when there is no error in the data read and the
MLD itself use as a fault detector which improves the
performance and also achieves high data rate while
minimizing the area of the majority gate using sorting
network.
Index Terms: ECC, majority logic decoder/detector (MLDD),
difference set cyclic codes, memory, sorting network, soft
errors.

I. INTRODUCTION

In the modern digital system design memories are
considers as an essential parts due to their reliability and
security. To protect memories from so–called soft errors[1].
the error correction codes are commonly used. Soft error is
caused due to radiation event without damaging the
circuit/device, which causes enough disturbance of charge to
change the logic value of memory cell[2].the soft error is also
called as single event upsets(SEUs).A multi bit upsets(MBU)
is created when high energy of radiation event may be affects
more than a single bit. Memories are processed by which
information to be encoded, stored and retrieved. While
retrieving encoded information should be uncorrupted. So it is
important to prevent memory against soft-error.

A) Memory Mitigation Technique:
1) Triple Modular Redundancy(TMR)

TMR is a special case of von-neumann method. It
consist of mainly three versions of the design in parallel, by
selecting the correct output using a majority voter[3]. The
complexity overhead would be three times adds the
complexity of the majority voter and thus increasing the power
consumption.
2) Error Correction Codes(ECC)

ECC codes are the good way to mitigate memory soft
errors. when there is a low soft error rate for terrestrial
radiation environments, the best solution is to use codes like
SEC-DED[3] because of their low encoding and decoding
complexity. However as a consequence of higher integration
densities, there is an increase in number of soft errors, which
causes the need for higher error correction capabilities [4].

Figure1.overview of fault corrector architecture for the proposed technique

II PREVIOUS WORK

Majority logic decoding(MLD) consist of number of

parity check equations and are orthogonal to each other ,so
that, each codeword participates in only one parity equation
for each iteration leaving very first bit which adds to all
equations. Because of these reason ,the outcome of majority of
these parity check equations defines the correctness of the
current bit under decoding. Two type of decoder is
implemented as Type I ML decoder & Type II ML decoder.

A) plain ML decoder

The ML decoder is a simple, power full decoder and
able to correct multiple random bit flips based on the number

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 5, May 2015)

29

of parity checking equations[1]. it is mainly consist of four
parts: a cyclic shift register, an XOR matrix, a majority gate,
and an XOR for correcting the codeword bit under decoding.
Initially the input signal is stored into cyclic shift register and
then shifted through all the N taps, by taking intermediate
values in each tap are used to find the results{Bj} of the check
sum equations from the XOR matrix. In the Nth decoding
cycle, the output signal is produced which is decoded version
of the input, after the result reached the final tap.

B) Plain MLD with SFD

An alternative designs may be used to improve the
decoder performance .there is one possibility is to add a fault
detector[1] to decode only faulty code words by calculating
the syndrome. the implementation of an SFD reduces the
average latency of the decoding process, it also adds design
complexity as shown in the figure2.

Figure 2.Schematic of an ML decoder with SFD

III. PROPOSED WORK

 Here in the present paper a serial corrector and fault
detector is implemented. By designing a majority gate using
sorting network we have proved that the fault detector
designed with serial corrector provides error detection in the
three decoding cycles. By using a The following hypothesis[7]
is made for the proposed technique: “Given a word that reads
by a memory protected with DSCC codes and it will be moved
upto five bit flips and all errors can be detected with three
decoding cycles only”. This is a big advancement over the
uncomplicated case where N decoding cycles are required to
ensure that the errors are detected. Figure3 shows the general
memory schematic of MLDD. Which is consist of an encoder,
memory and MLDD.

Figure3.A generic memory schematic of MLDD.

 In this section we present the overall MLDD system in our proposed work. In this system we give out the detail of encoder, me
1) The Encoder

Figure 4 shows an example for encoder design for
(15,7,5)EG-LDPC code. The information bits are forward to
the encoder to encode the information vector. This section
gives a brief introduction on linear block ECC’s. The encoder
circuitry consist of (n-k) XOR gates. An n bit codeword c
which is used to encode a k bit information vector I is
produced by multiplying the k bit information memory. The
encoding operation for linear codes essentially performs the
vector-matrix multiplication. C = [I x G] where G is a k x n

generator matrix. The encoder vector includes two parts, the
first one is information bits memory and second is the parity
bits. Whereas each parity bit is made of an inner product of
information vector and a column of X, from G = [I:X] where I
is a k x k identity matrix and X is a k x (n-k) matrix that
generates the parity bits. The encoder circuit[1] is used to
compute the parity bits of the (63,37,26) EG-LDPC. The
encoder vector c are (c0,c1,c2,…c25) bits are copied from the
information vectors I are (i0,i1,i2,…i25)bits. The remaining of
the encoded vector(c27,c28,…c62) is the parity bits and are
linear sums (XOR) of the information bits.

Figure4. structure of an encoder circuit for the (15,7,5)EGLDPC code

2) Fault Secure Detector:

The detector operation is used to generate the
syndrome vector and the checking or detecting operation is
given by S = C.HT. The syndrome vector S is an (n-k) bit
vector. every bit of the syndrome vector is obtained by the
product of C with each row of H . if the syndrome S is zero
then the C is a valid codeword else the C is errorneous [5]. An
XOR gate is used to implement the binary sum of this product.
the fault secure detector[6] design example for an (15,7,5)
EG-LDPC code is shown in figure 5.

Figure 5. structure of an fault secure detector circuit for the (15,7,5)EG-LDPC

3) Memory Block

In order to prevent accumulation of too many errors
in any memory word that surpasses the code correction
capability and the system must performing memory
scrubbing[3]. The process of periodically reading memory
words from the memory block and correcting any potential
faults[5] and finally write them back to the memory is the
function of memory scrubbing. The normal memory access
operation is kept constant for the periodic scrubbing operation
to be carried out.

4) Serial Corrector

Figure6 shows the One step majority logic decoder or
corrector .The serial majority takes n cycles to correct the
codeword which contain errors. When there is a low fault rate
found then the corrector block is used infrequently. the normal
memory reads path will be placed off by the serial corrector.
This is shown in the figure1 .the memory words are retrieved
from the memory block and checked by the detector unit.
When the detector detects an error the memory word is fed to
the corrector block to be corrected that has a latency of the
detector plus the n round of the corrector[4].

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 5, May 2015)

30

Figure6. one step serial corrector(15,7)

5) MLDD Design

Figure7 shows the schematic of the proposed MLDD
for N-bit codeword .The extra hardware needs to perform the
error detection is illustrated in the figure9 that is The control
unit & output tri-state buffers.

Figure7.Schematic of proposed MLDD for N bit

Figure8. flow diagram of the MLDD algorithm

Figure9.Schematic of MLDD control unit

Figure8. shows the flowchart of MLDD algorithm.
and the steps are given as Step1: initially the input signal is
stored into the cyclic shift register and shifted throughout all
the taps. Step2: the intermediate values in each tap are then
used to find the results {Bj} of the checksum equation from
the XOR matrix. Step3: the resulting sums {Bj} are then send
to the majority gate(MG) for calculating its correctness. If the
received number of 1’s in {Bj} is larger than the number of

zero’s, that means the current bit under decoding is wrong
and a signal triggered to correct it. Otherwise, the BUD
[4]would be correct and there are no extra functions would be
needed on it. Step4: in the next step, the contents of the shift
registers are rotated and the above procedure is repeated till all
codeword bits have been processed[6].

6) Majority Gate(MG)

The responsibility of the majority gate is to compute
the parity checksums and to take decision about the
correctness of the current bit under decoding(BUD).
Conventionally, the implementation of the MG grows
exponentially with the no of inputs added[4]. To avoid this
complexity issue, producing a majority gate based on sorting
networks.

7) Sorting Network

Figure10(a) & Figure10(b) shows the two bit sorter
network. A sorting network consist of wires and comparators
that will sort all possible inputs into ascending order in correct
manner. So that it is used to reducing the gates and their
interconnections of the majority gate.

Figure10 a) Comparature structure b) 2 bit sorter.

IV. SIMULATION RESULTS

The proposed designs are simulated in Xilinx 14.7

and the outputs are shown below. Experimental results shows
the power, area and decoding time has been reduced .

Figure11. simulation waveform for encoder

Figure12. simulation waveform for1 step MLD(63,37,26)

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 5, May 2015)

31

Figure13. Simulation result of MLDD(63,37,26).

V .RESULTS AND COMPARISON

Table I comparison of no. of cycles needed for proposed and existing designs

Table II comparison of speedup, delay and total estimated power
consumption.

VI. CONCLUSION AND FUTURE WORK

In this paper the MLDD fault detector module has

been designed in a way that is independent of the code size
and This makes its area overhead less and power consumption
is quite reduced compared with other approaches by the use of
sorting network. And the extension to this work is done by
implementing the majority logic decoder/detector using
additional error detection logic such as BIST technique. Future
work can be extended by replacing the conventional gates with
reversible logic gates and use scrubbing method in order to
reduce the conventional power consumption and message bits.

REFERENCES

[1]. R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Trans. Device Mater. Reliab., vol.
5, no. 3, pp. 301–316, Sep2005.

[2]. M. A. Bajura, Y. Boulghassoul, R. Naseer, S. DasGupta, A. F.Witulski,
J. Sondeen, S. D. Stansberry, J. Draper, L. W. Massengill, and J. N.
Damoulakis, “Models and algorithmic limits for an ECC-based
approach to hardening sub-100-nm SRAMs,” IEEE Trans. Nucl. Sci.,
vol. 54, no. 4, pp. 935–945, Aug. 2007.

[3]. R. Naseer and J. Draper, “DEC ECC design to improve memory
reliability in sub-100 nm technologies,” Proc. IEEE ICECS, pp. 586–
589, 2008.

[4]. S. Ghosh and P. D. Lincoln, “Dynamic low-density parity check codes
for fault-tolerant nano-scale memory,” presented at the Foundations
Nanosci. (FNANO), Snowbird, Utah, 2007.

[5]. S. Ghosh and P. D. Lincoln, “Low-density parity check codes for error
correction in nanoscale memory,” SRI Computer Science Lab., Menlo
Park, CA, Tech. Rep. CSL-0703, 2007.

[6]. H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
memory applications,” in Proc. IEEE Int. Symp. Defect Fault Toler.
VLSI Syst., 2007, pp. 409–417.

[7]. B. Vasic and S. K. Chilappagari, “An information theoretical
framework for analysis and design of nanoscale fault-tolerant memories
based on low-density parity-check codes,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

