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ABSTRACT- Due to higher integration densities, 

parameter variations and technology scaling the failures to 
performance may occur for every practical applications. 
this must be protected with effective error correction 
codes. An advanced error correction codes are used when 
an additional protection is needed. The project work deals 
with the idea of majority logic fault detection and 
correction technique using DS-LDPC codes with the 
application focused on memories. the majority logic 
decoder/detector codes is used because of their capability 
to correct large number of soft errors. Even though MLD 
consumes large time, this can be overcome by the proposed 
method which detects the errors in less cycle time. The 
proposed technique significantly reduces memory access 
time and also it takes three iterations instead of N 
iterations when there is no error in the data read and the 
MLD itself use as a fault detector which improves the 
performance and also achieves high data rate while 
minimizing the area of the majority gate using sorting 
network. 
Index Terms: ECC, majority logic decoder/detector (MLDD), 
difference set cyclic codes, memory, sorting network, soft 
errors. 
 

I. INTRODUCTION 
 

In the modern digital system design memories are 
considers  as an essential parts due to their reliability and 
security. To protect memories from so–called soft errors[1]. 
the error correction codes are commonly used. Soft error is 
caused due to radiation event without damaging the 
circuit/device, which causes enough disturbance of charge to 
change the logic value of memory cell[2].the soft error is also 
called as single event upsets(SEUs).A multi bit upsets(MBU) 
is created when high energy of radiation event may be  affects  
more than a single bit. Memories are processed by which 
information to be encoded, stored and retrieved. While 
retrieving encoded information should be uncorrupted. So it is 
important to prevent memory against soft-error. 

 
A) Memory Mitigation Technique: 
1) Triple Modular Redundancy(TMR) 

TMR is a special case of von-neumann method. It 
consist of mainly three versions of the design in parallel, by 
selecting the correct output using a majority voter[3]. The 
complexity overhead would be three times adds the 
complexity of the majority voter and thus increasing the power 
consumption. 
2) Error Correction Codes(ECC) 

ECC codes are the good way to mitigate memory soft 
errors. when there is a low soft error rate for terrestrial 
radiation environments, the best solution is to use codes like 
SEC-DED[3] because of their low encoding and decoding 
complexity. However as a consequence of higher integration 
densities, there is an increase in number of soft errors, which 
causes the need for higher error correction capabilities [4]. 

 

 
Figure1.overview of fault corrector architecture for the proposed technique 

 
II PREVIOUS WORK 

 
Majority logic decoding(MLD) consist of number of 

parity check equations and are orthogonal to each other ,so 
that, each codeword participates in only one parity equation 
for each iteration leaving very first bit which adds to all 
equations. Because of these reason ,the outcome of majority of 
these parity check equations defines the correctness of the 
current bit under decoding. Two type of decoder is 
implemented as Type I ML decoder & Type II ML decoder.  

 
A) plain ML decoder 

The ML decoder is a simple, power full decoder and 
able to correct multiple random bit flips based on the number 
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of parity checking equations[1]. it is mainly consist of four 
parts: a cyclic shift register, an XOR matrix, a majority gate, 
and an XOR for correcting the codeword bit under decoding. 
Initially the input signal is stored into cyclic shift register and 
then shifted through all the N taps, by taking intermediate 
values in each tap are used to find the results{Bj} of the check 
sum equations from the XOR matrix. In the Nth decoding 
cycle, the output signal is produced which is decoded version 
of the input, after the result reached the final tap. 

 
B) Plain MLD with SFD 

An alternative designs may be used to improve the 
decoder performance .there is one possibility is to add a fault 
detector[1]  to decode only faulty code words by calculating 
the syndrome.  the implementation of an SFD reduces the 
average latency of the decoding process, it also adds design 
complexity as shown in the figure2.  

 
Figure 2.Schematic of an ML decoder with SFD 

 
III. PROPOSED WORK 

 
           Here in the present paper a serial corrector and fault 
detector is implemented. By designing a majority gate using 
sorting network we have proved that the fault detector 
designed with serial corrector provides error detection in the 
three decoding cycles. By using a The following hypothesis[7] 
is made for the proposed technique: “Given a word that reads 
by a memory protected with DSCC codes and it will be moved 
upto five bit flips and all errors can be detected with three 
decoding cycles only”. This is a big advancement over the 
uncomplicated case where N decoding cycles are required to 
ensure that the errors are detected. Figure3 shows the general 
memory schematic of MLDD. Which is consist of an encoder, 
memory and MLDD.    

 
Figure3.A generic memory schematic of MLDD. 

 In this section we present the overall MLDD system in our proposed work. In this system we give out the detail of encoder, me
1) The Encoder 

Figure 4 shows an example for encoder design for 
(15,7,5)EG-LDPC code. The information bits are forward to 
the encoder to encode the information vector. This section 
gives a brief introduction on linear block ECC’s. The encoder 
circuitry consist of (n-k) XOR gates. An n bit codeword c 
which is used to encode a k bit information vector I is 
produced by multiplying the k bit information memory. The 
encoding operation for linear codes essentially performs the 
vector-matrix multiplication. C = [I x G] where G is a k x n 

generator matrix. The encoder vector includes two parts, the 
first one is information bits memory and second is the parity 
bits. Whereas each parity bit is made of an inner product of 
information vector and a column of X, from G = [I:X] where I 
is a k x k identity matrix and X is a k x (n-k) matrix that 
generates the parity bits. The encoder circuit[1] is used to 
compute the parity bits of the (63,37,26) EG-LDPC. The 
encoder vector c are (c0,c1,c2,…c25) bits are copied from the 
information vectors I are (i0,i1,i2,…i25)bits. The remaining of 
the encoded vector(c27,c28,…c62) is the parity bits and are 
linear sums (XOR) of the information bits. 

 
 
 
 

Figure4. structure of an encoder circuit for the (15,7,5)EGLDPC code 
 
2) Fault Secure Detector: 

The detector operation is used to generate the 
syndrome vector and the checking or detecting operation is 
given by S = C.HT. The syndrome vector S is an (n-k)  bit 
vector. every bit of the syndrome vector is obtained by the 
product of C with each row of H . if the syndrome S is zero 
then the C is a valid codeword else the C is errorneous [5]. An 
XOR gate is used to implement the binary sum of this product. 
the fault secure detector[6]  design example for an (15,7,5) 
EG-LDPC code is shown in figure 5. 

 
Figure 5. structure of an fault secure detector circuit for the (15,7,5)EG-LDPC 
 
3) Memory Block 

In order to prevent accumulation of too many errors 
in any memory word that surpasses the code correction 
capability and the system must performing memory 
scrubbing[3]. The process of periodically reading memory 
words from the memory block and correcting any potential 
faults[5] and finally write them back to the memory is the 
function of memory scrubbing. The normal memory access 
operation is kept constant for the periodic scrubbing operation 
to be carried out. 

 
4) Serial Corrector 

Figure6 shows the One step majority logic decoder or 
corrector .The serial majority takes n cycles to correct the 
codeword which contain errors. When there is a low fault rate 
found then the corrector block is used infrequently. the normal 
memory reads path will be placed off by the serial corrector. 
This is shown in the figure1 .the memory words are retrieved 
from the memory block and checked by the detector unit. 
When the detector detects an error the memory word is fed to 
the corrector block to be corrected that has a latency of the 
detector plus the n round of the corrector[4]. 
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Figure6. one step serial corrector(15,7) 

 
5) MLDD Design 

Figure7 shows the schematic of the proposed MLDD 
for N-bit codeword .The extra hardware needs to perform the 
error detection is illustrated in the figure9 that is The control 
unit & output tri-state buffers. 

 
Figure7.Schematic of proposed MLDD for N bit 

 
Figure8. flow diagram of the MLDD algorithm 

 
Figure9.Schematic of MLDD control unit 

Figure8. shows the flowchart of MLDD algorithm. 
and the steps are given as Step1: initially the input signal is 
stored into the cyclic shift register and shifted throughout all 
the taps. Step2: the intermediate values in each tap are then 
used to find the results {Bj} of the checksum equation from 
the XOR matrix. Step3: the resulting sums {Bj} are then send 
to the majority gate(MG) for calculating its correctness. If the 
received number of 1’s in {Bj} is larger than the number of 

zero’s, that means the current bit under decoding is wrong  
and a signal triggered to correct it. Otherwise, the BUD 
[4]would be correct and there are no extra functions would be 
needed on it. Step4: in the next step, the contents of the shift 
registers are rotated and the above procedure is repeated till all 
codeword bits have been processed[6]. 

 
6) Majority  Gate(MG) 

The responsibility of the majority gate is to compute 
the parity checksums and to take decision about the 
correctness of the current bit under decoding(BUD). 
Conventionally, the implementation of the MG grows 
exponentially with the no of inputs added[4]. To avoid this 
complexity issue, producing a majority gate based on sorting 
networks. 

 
7)  Sorting  Network 

Figure10(a) & Figure10(b) shows the two bit sorter 
network. A sorting network consist of wires and comparators 
that will sort all possible inputs into ascending order in correct 
manner. So that it is used to reducing the gates and their 
interconnections of the majority gate.  
 

 
 
Figure10 a) Comparature structure b) 2 bit sorter. 
 

IV. SIMULATION RESULTS 
 
The proposed designs are simulated in Xilinx 14.7 

and the outputs are shown below. Experimental results shows 
the power, area and decoding time has been reduced . 

 
Figure11. simulation waveform for encoder 

 

 
Figure12. simulation waveform for1 step MLD(63,37,26) 
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Figure13. Simulation result of MLDD(63,37,26). 

 
V .RESULTS AND COMPARISON 

 
Table I comparison of no. of cycles needed for proposed and existing designs 

 

 

Table II comparison of speedup, delay and  total estimated power 
consumption. 

 
VI. CONCLUSION AND FUTURE WORK 

 
In this paper the MLDD fault detector module has 

been designed in a way that is independent of the code size 
and This makes its area overhead less and power consumption 
is quite reduced compared with other approaches by the use of 
sorting network. And the extension to this work is done by 
implementing the majority logic decoder/detector using 
additional error detection logic such as BIST technique. Future 
work can be extended by replacing the conventional gates with 
reversible logic gates and use scrubbing method in order to 
reduce the conventional power consumption and message bits. 
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